US 2003/0076978 Al

[0038] OPLs are a data structure for saving data in a data
file. More detailed descriptions of OPLs can be found in
U.S. Pat. Nos. 5,933,842 and 5,946,696. The disclosure of
those patents is hereby incorporated by reference.

[0039] Conventional OPLs provide a data structure for a
data file. That data structure enables the storing of informa-
tion in a common format useful to provide compatibility
with previous and future versions of an application program.
The format of the OPL enables skipping over data that the
application program does not recognize while using the data
that the application program does recognize. Conventional
OPLs can grow with new information in a new version of an
application program because they can be dynamically
expanded for new objects and properties.

[0040] Referring to FIG. 3, characteristics of a conven-
tional OPL 300 will be described. (For additional informa-
tion regarding OPLs, see U.S. Pat. Nos. 5,933,842 and
5,946,696.)

[0041] An “object,” as used in this disclosure, refers to an
entity that has characteristics and that is either displayed by
an application program or is part of an application program.
An example of an object displayed by an application pro-
gram is a text box contained in a window of an application
program into which a user can input text. The characteristics
of the text box can include its color, the font of the text, and
the point size of the text. An example of an object that is part
of an application program is an in-memory representation of
an animal, where its characteristics can include its color,
number of legs, and whether it is a carnivore. This in-
memory representation can be implemented as a data struc-
ture with the elements of the data structure storing the
characteristics. An example of such a data structure is the
C++ class data structure. The characteristics of an object are
referred to as properties of the object. Each property of an
object typically has a value. For example, the color property
may have the value red.

[0042] As discussed in the Background section, an
example of an object 100 is illustrated in FIG. 1. Object 100
can comprise a border 102 and text 104. Object 100 can have
six properties for border 102 and text 104. Border 102 can
have properties of border style and border size. Text 104 can
have properties of font, text size, justification, and text style.
The default values for border 102 and text 104 can be that
the border style is solid, the border size is 4 point, the text
font is Times New Roman, the text size is 20 point, the text
justification is left, and the text style is non-italic.

[0043] Since OPL 300 uses a standard format, it can be
used to internally store the properties of an object. For
example, OPL 300 can include an object property identifi-
cation (“opyid”) element 302, an object property type cle-
ment 304, and an object property value element 306. Opyid
element 302 can contain a numerical identifier that is
associated with a particular property. The system can main-
tain a mapping of all properties to their opyid, and this
mapping can vary from OPL to OPL. In other words, each
OPL can define what property the oypid values represent and
other OPLs can use the same opyid values for different
properties. Object property type element 304 refers to a data
type, such as Short Integer (2 bytes), Long Integer (4 bytes),
Unicode string, etc. Object property value element 306
conforms to the appropriate data type of the associated
object property type element 304. As shown in FIG. 3 for

Apr. 24, 2003

example, opyid “1” denotes an object property type element
304 of Short Integer (2 bytes), which the system knows
corresponds to a “color,” and an object property value
element 306 of 0xOOFF0000, which is the RGB (Red, Green,
Blue) encoding for “red.” When referring to a particular
property, the opyid is used. For example, if the border
property in OPL 300 is desired, it is referenced by its opyid
“2.” An OPL may also contain another OPL as a property,
allowing for more complex data structures to be created.

[0044] 1Ina 16-bit conventional OPL, opyid element 302 is
typically eleven bits. In such a configuration, OPL 300 is
limited to 2048 items because of the eleven bit constraint. In
a publishing system, the number of objects and properties
can easily exceed 2048 items. A publishing document can
have multiple pages, each having many objects. Each object
can have many properties associated with it. Accordingly,
maximizing OPL capacity in some instances is desirable. To
this end, the present invention can include an improved OPL
type, the OPL array, having an almost unlimited capacity.
OPL arrays can store large amounts of data, such as all
objects in a document. An OPL can still be used to store
smaller quantities of properties.

[0045] Referring to FIG. 4, a Data structure 400 according
to an exemplary embodiment of the present invention will be
described. Data structure 400 can include root OPL 402.
Root OPL 402 can include a “Max” property 402a, an
invariant property 402b, and an OPL array property 402c.
While not necessary, max property 402a can indicate the
size of OPL array property 402¢ and can provide the
convenience of allocating adequate memory when reading
data structure 400. Invariant property 4025 can define a
feature where the array indices of items in OPL array
property 402¢ remain constant. In other words, the array
index of an item in OPL array property 402¢ will not change
throughout the lifetime of the item. Accordingly, new items
can only be added at an index that is not currently used, and
deleting an item results in an empty index location.

[0046] OPL array property 402¢ can reference OPL array
404. OPL array 404 can be stored in OPL property 402c, or
it can be stored separately. OPL array 404 can contain
properties, other OPLs, or other OPL Arrays. As shown in
FIG. 4, OPL array 404 can include a sub-object property list
(a “subopl”) 404a-404e, where each subopl 404a-404¢ can
be a property, an OPL, or another OPL Array. Each subopl
404a-404¢ can reference an array element 406. Each array
element 406 can be any property, an OPL, or another OPL.
Array. In the example, array elements 406 are OPLs that
contain an ID and a variable length string.

[0047] While only one OPL array 404 is shown in FIG. 4,
with its associated OPL array elements 406, the present
invention is not limited to such a structure. For example,
data structure 400 can include a plurality of OPLs like OPL
array 404, each having associated OPL array elements 406.
In that case, index 402c¢ can reference each OPL array 404.

[0048] Subopls 404a2-404e cach reference a property,
object, or other OPL similarly to opyid 302 (FIG. 3) of a
conventional OPL. However, in data structure 400, the items
in OPL array 404 are not given a specific opyid. Instead, the
opyid for each subopl 404a-404¢ in OPL array 404 can be
set to “~1.” Then, the position of each subopl 404a-404¢ in
OPL array 404 can be used as the opyid. The positions of
each subopl 404a-404e¢ are represented in FIG. 4 by respec-



